Electrophysiological evaluation of sensory and motor pathways after incomplete unilateral spinal cord contusion.
نویسندگان
چکیده
OBJECT Unilateral contusions represent an increasingly popular model for studying the pathways and recovery mechanisms of spinal cord injury (SCI). Current studies rely heavily on motor behavior scoring and histological evidence to make assessments. Electrophysiology represents one way to reliably quantify the functionality of motor pathways. The authors sought to quantify the functional integrity of the bilateral motor and sensory pathways following unilateral SCI by using measurements of motor and somatosensory evoked potentials (MEPs and SSEPs, respectively). METHODS Eighteen rats were randomly divided into 3 groups receiving a mild unilateral contusion, a mild midline contusion, or a laminectomy only (control). Contusions were induced at T-8 using a MASCIS impactor. Electrophysiological analysis, motor behavior scoring, and histological quantifications were then performed to identify relationships among pathway conductivity, motor function, and tissue preservation. RESULTS Hindlimb MEPs ipsilateral to the injury showed recovery by Day 28 after injury and corresponded to approximately 61% of spared corticospinal tract (CST) tissue. In contrast, MEPs of the midline-injured group did not recover, and correspondingly > 90% of the CST tissue was damaged. Somatosensory evoked potentials showed only a moderate reduction in amplitude, with no difference in latency for the pathways ipsilateral to injury. Furthermore, these SSEPs were significantly better than those of the midline-injured rats for the same amount of white matter damage. CONCLUSIONS Motor evoked potential recovery corresponded to the amount of spared CST in unilateral and midline injuries, but motor behavior consistently recovered independent of MEPs. These data support the idea that spared contralateral pathways aid in reducing the functional deficits of injured ipsilateral pathways and further support the idea of CNS plasticity.
منابع مشابه
Changes in Urinary Bladder Structure and Systemic Inflammation Response Following Incomplete Transection versus Contusion Spinal Cord Injury in Rat Model
Objective- The current study was conducted to evaluate changes in the urinary bladder structure and leukocyte profile as an important index of the systemic inflammation response for two different types of spinal cord injury (SCI) in a rat model. Design- Experimental Study.Animals- Forty adult healthy female Sprague-Dawley rats.<br /...
متن کاملEvaluation of Sensory Pathways in Spinal Cord by Comparison of fMRI Methodologies
Introduction: Today, clinicians and neuroscientists need to have a comprehensive survey of neurological pathologies and injuries. For the First-time, SEEP contrast and Spin-Echo pulse sequences was used for functional imaging of the Lumbar spinal cord. This method used by several research groups for Spinal cord mapping, but other researchers tried to improve BOLD fMRI to Spina...
متن کاملPotential long-term benefits of acute hypothermia after spinal cord injury: assessments with somatosensory-evoked potentials.
OBJECTIVE Neuroprotection by hypothermia has been an important research topic over last two decades. In animal models of spinal cord injury, the primary focus has been assessing the effects of hypothermia on behavioral and histologic outcomes. Although a few studies have investigated electrophysiological changes in descending motor pathways with motor-evoked potentials recorded during cooling, ...
متن کاملFunctional recovery assessment of spinal cord contusion model in male rats without therapeutic interventions
Introduction: Spinal cord injury (SCI) is one of the most serious clinical diseases, which not only affects the patient's physical and mental status, but its effects will be spread to family and community. After severe spinal cord injury, astrocytes of the central nervous system (CNS) become reactive astrocytes, and play the main role of glial scar formation. The scar is a major obstacle to r...
متن کاملCompound Action Potential of Isolated Spinal Cord: A Biophysical Analysis to Address Activity of Individual Fibers Following Contusion Injury
Compound action potential (CAP) of spinal cord represents valuable properties of neural fibers including excitability, rate of myelination and membrane integrity. These properties are measured using amplitude, latency and area under curve of CAPs recorded from spinal cord. Here, the isolated spinal cord was set in a double sucrose gap (DSG) chamber and its response to intracellular stimulation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurosurgery. Spine
دوره 16 4 شماره
صفحات -
تاریخ انتشار 2012